
Benchmarking Data Flow Systems
for Scalable Machine Learning

Christoph Boden, Andrea Spina�, Tilmann Rabl, Volker Markl
TU Berlin

� rstname.lastname@tu-berlin.de

ABSTRACT
Distributed data � ow systems such as Apache Spark or Apache
Flink are popular choices for scaling machine learning algo-
rithms in production. Industry applications of large scale
machine learning such as click-through rate prediction rely
on models trained on billions of data points which are both
highly sparse and high-dimensional. Existing Benchmarks
attempt to assess the performance of data� ow systems such
as Apache Flink, Spark or Hadoop with non-representative
workloads such as WordCount, Grep or Sort. They only
evaluate scalability with respect to data set size and fail to
address the crucial requirement of handling high dimensional
data.

We introduce a representative set of distributed machine
learning algorithms suitable for large scale distributed set-
tings which have close resemblance to industry-relevant ap-
plications and provide generalizable insights into system per-
formance. We implement mathematically equivalent ver-
sions of these algorithms in Apache Flink and Apache Spark,
tune relevant system parameters and run a comprehensive
set of experiments to assess their scalability with respect to
both: data set size and dimensionality of the data. We eval-
uate the systems for data up to four billion data points and
100 million dimensions. Additionally we compare the perfor-
mance to single-node implementations to put the scalability
results into perspective.

Our results indicate that while being able to robustly scale
with increasing data set sizes, current state of the art data
� ow systems are surprisingly ine� cient at coping with high
dimensional data, which is a crucial requirement for large
scale machine learning algorithms.

CCS Concepts
• Theory of computation � Massively parallel algo-
rithms; MapReduce algorithms; • Software and its
engineering � Data � ow architectures;

� contributed while at TU Berlin, now at Radicalbit S.r.l.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro� t or commercial advantage and that copies bear this notice and the full citation
on the� rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci� c permission
and/or a fee. Request permissions from Permissions@acm.org

BeyondMR’17 May 19, 2017, Chicago, IL, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-5019-8/17/05.

DOI: http://dx.doi.org/10.1145/3070607.3070612

1. INTRODUCTION AND MOTIVATION
In Big Data Analytics, the MapReduce [11] paradigm,

popularized by its open-source implementation Hadoop [3]
has been widely adopted as a solution to robustly scale data-
intensive applications to very large data sets on clusters of
commodity hardware. However it has also been established
that Hadoop MapReduce is ine� cient at executing iterative
workloads such as distributed machine learning algorithms.
[25, 15] This sparked the development of a multitude of novel
approaches and systems aiming to improve the performance
and ease of implementation of more complex workloads such
as distributed machine learning algorithms. We consider the
two most prominent representative systems which managed
to morph from research prototypes into production systems
enjoying widespread adoption in industry:

Apache Spark [5] introduced the concept of data-parallel
transformations on Resilient Distributed Datasets (RDDs)
[29]: read-only collections of data partitioned across nodes,
which can be cached and recomputed in case of node failures,
to support the e� cient execution of iterative algorithms.

Apache Flink [2, 10] (formerly Stratosphere [6]) intro-
duced a general data� ow engine supporting the � exible ex-
ecution of a more rich set of operators such asmap, reduce
and co-group as well as a native operator for iterative com-
putations. Flink jobs are compiled and optimized by a cost-
based optimizer before being scheduled and executed by the
distributed streaming data � ow engine. This distributed
runtime allows for pipelining of data.

While these second generation big data analytics systems
have been shown to outperform Hadoop for canonical iter-
ative workloads[29, 12], it remains an open question how
they perform in executing large scale machine learning algo-
rithms.

Consider the prominent problem of click-through rate pre-
diction for online advertisements, a crucial building block
in the multi-billion dollar online advertising industry, as an
example for large scale machine learning. To maximize rev-
enue, platforms serving online advertisements must accu-
rately, quickly and reliably predict the expected user be-
haviour for each displayed advertisement. These prediction
models are trained on hundreds of terabytes of data with
hundreds of billions of training samples . The data tends to
be very sparse (10-100 non-zero features) but at the same
time very high dimensional (up to 100 billion unique fea-
tures [9]. For this important problem, algorithms such as
regularized logistic regression are still the method of choice
[21, 24]).

In the context of scalable, distributed machine learning,
there are thus multiple dimensions of scalability which are
of particular interest:

1. Scaling the Data: scaling the training of (super-
vised) machine learning models to extremely large data
sets (in terms of the number of observations contained)
is probably the most well established notion of scalabil-
ity in this context as it has been shown that even sim-
ple models can outperform more complex approaches
when trained on su� ciently large data sets [13, 7].

2. Scaling the Model Size: many large scale machine
learning problems exhibit very high dimensionality. For
example, classi� cation algorithms that draw on textual
data can easily contain 100 million dimensions or more,
models for click-through rate prediction for online ad-
vertisements can reach up to 100 billion dimensions
[9]. For these use cases, being able to e� ciently han-
dle high dimensional models is a crucial requirement
as well.

3. Scaling the Number of Models: To tune hyper-
parameters many models with sightly di � erent param-
eters are usually trained in parallel.

Ideally a system suited for scalable machine learning should
e� ciently support all three of these dimensions. However
since scaling the number of models to be trained in parallel
is essentially an embarrassingly parallel problem1 , we focus
on the � rst two aspects: scaling the data and scaling the
model dimensionality in our experiments.

We introduce a representative set of distributed machine
learning algorithms suitable for large scale distributed set-
tings comprising logistic regression and k-means clustering,
which have close resemblance to industry-relevant applica-
tions and provide generalizable insights into system perfor-
mance. We implement mathematically equivalent versions
of these algorithms in Apache Flink and Apache Spark, tune
relevant system parameters and run a comprehensive set of
experiments to assess their performance. Additionally we
explore e� cient single-node and single threaded implemen-
tations of these machine learning algorithms in order to in-
vestigate the overhead incurred due to the use of the JVM
and Scala as well as the distributed setting and to put the
scalability results into perspective as has been suggested by
[22].

Contrary to existing Benchmarks, which assess the per-
formance of Flink, Spark or Hadoop with non representative
workloads such asWordCount, Grep or Sort, we evaluate the
performance of these systems for scalable machine learning
algorithms.

Contributions. In order to solve problem of how to ob-
jectively and robustly assess and compare the performance
of distributed data processing platforms for machine learn-
ing workloads, we present the following major contributions:

1. We present a Distributed Machine Learning Bench-
mark for distributed data analytics systems, an in-
depth description of the individual algorithms, metrics

1We do acknowledge that there exists signi� cant optimiza-
tion potential in this dimension as well, as has recently been
pointed out by Kumar et al Model Selection Management
[16]. However, this requires the adaption if not redesign of
the data processing systems and is thus out of the scope of
this paper

and experiments to assess the performance and scala-
bility characteristics of the systems for representative
machine learning workloads as well as a detailed anal-
ysis and discussion of a comprehensive experimental
evaluations.

2. To ensure reproducibility we provide our benchmark
algorithms on top of Apache Flink and Apache Spark
as open-source software2 implemented using the Peel
framework [1] for de� ning and executing experiments
for distributed systems and algorithms. By providing
simple reference implementations of a small set of core
algorithms, we want to make it easier for new software-
frameworks to compare themselves to existing frame-
works.

3. The results of our experimental evaluation indicate
that while being able to robustly scale with increasing
data set sizes, current state of the art data � ow systems
for distributed data processing such as Apache Spark
or Apache Flink struggle with the e � cient execution of
machine learning algorithms on high dimensional data,
an issue which clearly deserves further investigation.

2. OUTLINE
The rest of this paper is structured as follows: in Section 3

we provide the necessary systems background about Apache
Spark and Apache Flink as well as important parameters
that have to be set and tuned in each system. in Section 4 we
present a detailed discussion of the chosen machine learning
workloads and their implementations in the data � ow sys-
tems. Section 5 introduces the metrics and experiments that
constitute the Benchmark and Section 6 provides concrete
results and a discussion of the comprehensive experimental
evaluation of the benchmark workloads and systems under
evaluation. In Section 7 we discuss related work in the area
of benchmarking distributed data processing systems before
we conclude and summarize our� ndings in Section 8

3. SYSTEMS BACKGROUND
In this section we provide a brief overview of the di � er-

ent systems under evaluation as well as relevant parameter
settings.

3.1 Apache Spark
Apache Spark is a distributed big data analytics frame-

work centered around the concept of Resilient Distributed
Datasets (RDDs)[29]. A RDD is a distributed memory ab-
straction in the form of a read-only collection of objects
partitioned across a set of machines that can be rebuilt if a
partition is lost, thus providing fault tolerance.

RDDs provide an interface based on transformations (e.g.,
map(), filter() or join()) and actions. Transformations
on RDDs are lazily evaluated, thus computed only when
needed e.g. by an action and can be pipelined. RDD ac-
tions (e.g. count() , reduce()) trigger the computation and
thus execution of transformations on RDDs. Fault tolerance
is provided by logging the transformations used to build a
dataset (its lineage) rather than the actual data. If a par-
tition of an RDD is lost, the RDD has enough information
about how it was derived from other RDDs to recompute

2https://github.com/bodenc/ml-benchmark

just that partition. Whenever a user runs an action on
an RDD, the Spark scheduler examines that RDD’s lineage
graph to build a directed acyclic graph (DAG) of so called
stages to execute.

Users can control two main aspects of RDDs: persistence
and partitioning: Users can indicate which RDDs they will
reuse and would thus like to persist in memory and choose
a StorageLevel for them (e.g., MemoryOnly). Spark keeps
persistent RDDs in memory by default, but it can spill them
to disk if there is not enough RAM. Users can also force a
custom partitioning to be applied to an RDD, based on a
key in each record.

3.2 Apache Flink
Apache Flink, formerly known as Stratosphere [6, 10], is

essentially a streaming data � ow engine designed to process
both stream and batch workloads. The batch processing
part is centered around the concept of a DataSet - a dis-
tributed collection comprising the elements of the data set
to be processed. Users can specify functional transforma-
tions on these DataSets e.g. map(), fiter() , reduce() .

Flink programs are also executed lazily: the data loading
and transformations do not happen immediately. Rather,
each operation is created and added to the program’s plan.
The operations are only executed when one of theexecute()
methods is invoked on the ExecutionEnvironment object.

Analogous to query optimization in databases, the pro-
gram is transformed to a logical plan and then compiled
and optimized by a cost-based optimizer, which automati-
cally chooses an execution strategy for the program based on
various parameters such as data size or number of machines
in the cluster. The � nal physical plan is then scheduled
and executed by the distributed streaming data � ow engine,
which is capable of pipelining the data.

Apache Flink does not allow the user to specify DataSets
to be cached in memory, but it does provide its very own na-
tive iterations operator, for specifying iterative algorithms.
The Flink optimizer detects this and adds caching operators
to the physical plan, ensuring that loop-invariant data is not
re-read from the distributed � le system in each iteration. In
contrast, Spark implements iterations as regular for-loops
and executes them by loop unrolling.

3.3 Parameter Con� guration
While Apache Flink and Spark are both data � ow sys-

tems, the architecture and con� guration settings that have
to be set and potentially tuned by the user di � er quite sub-
stantially between the two systems.

Parallelism. In a Flink cluster, each node runs aTaskMan-
ager with a � xed number of processing slots, generally pro-
portional to the number of available CPUs per node. Flink
executes a program in parallel by splitting it into subtasks
and scheduling these subtasks to individual processing slots.
Once set, the number of slots serves as the maximum of pos-
sible parallel tasks and is used as the default parallelism of
all operators. We follow the Flink recommendation 3 and
set the number of task slots equal to the number of cores
available in the cluster. This generally triggers an initial re-
partitioning phase in a job, as the number of HDFS blocks
is rarely equivalent to the desired number of subtasks.

3https://ci.apache.org/projects/ � ink/
� ink-docs-release-1.0/setup/con� g.html#
con� guring-taskmanager-processing-slots

0

50

100

150

200

0 0,2 0,4 0,6 0,8 1

R
un

tim
e

in
M

in
ut

es

Data Set Size (linear scaling factor)

MEMORY_ONLY

MEMORY_ONLY_SER

MEMORY_AND_DISK

MEMORY_AND_DISK_SER

Figure 1: L2 regularized logistic regression training
in Apache Spark with increasing data set size for
a � xed number of nodes and di � erent RDD Stor-
ageLevels.

In Spark, each worker node runsExecutors with the abil-
ity to run executor.cores number of tasks concurrently.
The actual degree of parallelism (number of tasks per stage)
is furthermore determined by the number of partitions of
the RDD (number of HDFS blocks the input data set by
default), where the resulting parallelism is given by:

min (numExecutors × coresP erExecutor, numP artitions)

Following the Spark recommendation 4 we setexecutor.cores
equal to the number of cpu cores available in the cluster and
set the parallelism (number of RDD partitions) to 3 times
the number of CPU cores available in the cluster.

Caching. Contrary to Flink, Spark allows for the explicit
caching of RDDs in Memory. For this, the user can choose
one of four di� erent Storage Levels :

MEMORY_ONLYstores the RDD as deserialized Java objects
in the JVM. If the RDD does not � t in memory, some par-
titions will not be cached and will be recomputed on the � y
each time they are needed.

MEMORY_AND_DISKstores the RDD as deserialized Java ob-
jects in the JVM. However, if the RDD does not � t in mem-
ory, partitions that do not � t are stored on disk, and read
from there when ever they are needed.

MEMORY_ONLY_SERIALIZED: the RDD is stored as serialized
Java objects (one byte array per partition). This is gener-
ally more space-e� cient than deserialized objects but more
CPU-intensive to read.

MEMORY_AND_DISK_SERIALIZED: the RDD is stored as seri-
alized Java objects (one byte array per partition), but par-
titions that do not � t into memory are spilled to disk in-
stead of recomputing them on the � y each time they are
needed. Note that since the partitions which are spilled to
disk are also written out in serialized form, the disk footprint
is smaller than in the MEMORY_AND_DISKcase.

In order to understand the impact of the di � erent Storage
Levels for a typical machine learning workload, we run ten
iterations of gradient descent training of a l2 regularized
logistic regression model (details in Section 4) on the criteo

4https://spark.apache.org/docs/latest/tuning.html#
level-of-parallelism

data set (details in Section 5.4) for di � erent StorageLevel
settings on 30 compute nodes (details in Section 5.3).

Figure 1 shows the runtime results of our evaluation for in-
creasing input data set sizes. It is apparent that the RDDs
no longer � t into the combined memory of the cluster for
the two non-serialized StorageLevels above a data set size
of 0.2. Performance signi� cantly degrades, as partitions
that do not � t into memory have to be re-read from disk
or re-computed, where re-computation (MEMORY_ONLY) seems
to be more expensive than re-reading partitions from disk
(MEMORY_AND_DISK). The two serialized strategies show sig-
ni� cantly better performance after a data set size of 0.2, as
the serialized RDD partitions are more compact and still
� t into the combined memory up until a data set size of
0.6. Beyond this point, partitions have to be re-read from
disk or re-computed as well, where once again the Stor-
ageLevel relying on re-reading partitions from disk performs
slightly better than the one that recomputes partitions that
do not � t into memory. Based on these results we chose
(MEMORY_AND_DISK_SERIALIZED) as the StorageLevel for all
subsequent benchmark experiments. It consistently outper-
forms all other ones, except for very small data set sizes
(data set size 0.1 - 0.2) where it still shows comparable per-
formance to the non-serialized StorageLevels .

Apache Flink does not allow the user to cache DataSets
explicitly, but provides a native iteration operator which
prompts the optimizer to cache the data. We thus imple-
mented all benchmark algorithms with this operator.

Bu � ers. Network bu � ers are a critical resource of the
communication. They are used to bu� er records before
transmission over a network, and to bu � er incoming data
before dissecting it into records and handing them to the
application. In Flink the user can adjust both the number
and size of the bu� ers. While Flink suggests5 to use the
approximately

numCores 2 × numMachines × 4

bu� ers, we encountered that a higher setting is advisably for
machine learning workloads.

Serialization By default, Spark serializes objects using
the java serialization framework, however Spark can also
use the Kryo library to serialize objects more quickly when
classes are registered. Flink on the other hand comes with
its own custom serialization framework which attempts to
assess the data type of user objects with help of the scala
compiler and represent it via TypeInformation . Each Type-
Information provides a serializer for the data type it repre-
sents. For any data type that cannot be identi � ed as another
type, Flink returns a serializer that delegates serialization to
Kryo. In order to ensure a fair assessment of the Systems
under test, decided to force both systems to useKryo as a
serializer and provided custom serialization routines for the
data points in both Spark and Flink.

4. BENCHMARK WORKLOADS
In this section we outline the main algorithms that con-

stitute the benchmark workloads. As was laid out in the
introduction, our goal is to provided a fair and insightful
Benchmark which re� ects the requirements of real-world ma-
chine learning applications that are deployed in production
and generates meaningful results.
5https://ci.apache.org/projects/ � ink/ � ink-docs-release-1.
0/setup/con � g.html#con � guring-the-network-bu � ers

4.1 Supervised learning
The goal in supervised learning is to learn a function f w

which can accurately predict the labels y � Y for data points
x � X given a set of labeled training examples (x i , yi). The
actual task of learning a model is to � t the parameters w
of the function f w based on the training data and a loss
function l (f w (x) , y). To avoid over � tting, a regularization
term � (w) that captures the model complexity is added to
the objective. Di � erent parametrizations of the components
f w , l (f w (x) , y) and � (w) yield quite a variety of di � er-
ent supervised learning algorithms including SVMs, LASSO
and RIDGE regression as well as logistic regression. For the
important problem of click-through rate prediction for on-
line advertisements, algorithms such as regularized logistic
regression are still the method of choice [21, 24].

Solvers. The most commonly used loss functions happen
to be both convex and di� erentiable, which guarantees the
existence of a minimizer ŵ. It also enables the application of
batch gradient-descent (BGD) as a solver. This algorithm
performs the following step using the gradient of the loss
until convergence:

w� = w �

�

� �
�

� w
� (w) +

�

(x,y) � (X,Y)

�
� w

l (f w (x) , y)

�

�

We choose and implemented this solver, because it actually
represents the data � ow and I/O footprint exhibited by a
wide variety of (potentially more complex) optimization al-
gorithms such as L-BFGS [19] or TRON [18].6

Implementation Rather than depending on existing ma-
chine learning library implementations, we implement all
learning algorithms from scratch, in order to ensure that
we analyze the performance of the underlying systems and
not implementation details. As a common linear algebra
abstraction we use the Breeze library 7 for numerical pro-
cessing.

In Flink we implement batch gradient descent as
MapPartition functions, which compute the individual BGD
updates and pre-aggregate partial sums of gradients, which
are ultimately summed up in a global reduce step. This
turns out to be the more performant alternative to using
a map() to compute the gradients and summing them up
in a subsequent reduce() step during experimental evalua-
tion (See Figure 2). To e� ciently iterate over the training
data set, we utilize Flink’s batch iterate() operator, which
feeds data back from the last operator in the iterative part
of the data � ow to the � rst operator in the iterative part of
the data � ow and thus attempts keep loop-invariant data in
memory. The model vector is distributed to the individual
tasks a broadcast variable.

In Spark we leverage theTreeAggregate() to perform the
batch gradient descent computation and update, aggregat-
ing the partial updates in a multi-level tree pattern. The
model vector is also distributed to the individual tasks as a
broadcast variable. This turnes out to be more robust for

6The recently proposed algorithm HOGWILD! [23] suggests
asynchronous stochastic gradient descent (SGD) solvers im-
plemented without any locking but rather permitting con-
� icting model updates still converge and thus provide a more
performant alternative to batch-type solvers. However nei-
ther Apache Spark nor Apache Flink are able to train models
asynchronously, thus we do not consider this approach.
7https://github.com/scalanlp/breeze

higher dimensionalities than a MapPartition implementa-
tion and more performant than a map() - reduce() imple-
mentation (See Figure 2).

4.2 Unsupervised learning
For unsupervised learning we choose to implement the

popular k-means clustering algorithm, which solves the fol-
lowing objective:

min
k�

j =1

�

i � C

||x i � µ j | |2

with the heuristic where k cluster centers are sampled from
the data set, the distance to each of these centroids, whereµ j

is the centroid of the j -th cluster, is computed for each data
point, every data point is assigned to its closest centroids,
and the centroids subsequently updated. While also exhibit-
ing the iterative nature like the supervised learning work-
load, k-means evaluates the e� ectiveness of thereduceByKey()
operator in Flink and the groupBy() and reduce() opera-
tor in Spark. Furthermore k-means is part of most related
work.

5. BENCHMARK DIMENSIONS AND SET-
TINGS

In this Section, we present the data generation strategies,
data sets, experiments and measurements that constitute
the Benchmark. Furthermore we provide the speci � cation of
the hardware we relied upon for our experimental evaluation.

5.1 Scalability
Traditionally, in the context of high performance comput-

ing (HPC), scalability is evaluated in two di � erent notions:
Strong Scaling: is de� ned as how the runtime of an

algorithm varies with the number of nodes for a � xed total
problem size.

Weak Scaling: is de� ned as how the runtime of an algo-
rithm varies with the number of nodes for a � xed problem
size per node, thus a data size proportional to the number
of nodes.

While these metrics have their merit in the evaluation of
scalability of distributed algorithms on distributed systems,
when it comes to scaling machine learning algorithms on dis-
tributed systems for real world uses cases, two other aspects
become the primary concern, namely:

Scaling the Data: How does the algorithm runtime be-
have when the size of the data (number of data points) in-
creases?

Scaling the Model: How does the algorithm runtime
behave when the size of the model (number of dimensions)
increases?

The main motivation for introducing distributed process-
ing systems into production environments is usually the abil-
ity to robustly scale an application with a growing produc-
tion workload (e.g. growing user base), by simply adding
more hardware nodes. However in the short run, the hard-
ware setup is usually � xed (assuming an on-premise solu-
tion). We thus need to introduce two new experiments to
adequately capture the desired scaling dimensionsdata and
model:

Experiment 1: Production Scaling: Measure the run-
time for training a model while varying the size of the train-
ing data set for a � xed cluster setup (model size � xed)

criteo part num data points raw size in GB
day0 195,841,983 46.35
day1 199,563,535 47.22
day2 196,792,019 46.56
day3 181,115,208 42.79
day5 172,548,507 40.71
day6 204,846,845 48.50
total 1,150,708,097 272.14

Table 1: Subset of the criteo data set used in the
experiments.

Experiment 2: Model Dimensionality Scaling: Mea-
sure the runtime for training a model on a � xed size cluster
setup (training data set size � xed)

In practice the ability to scale the number of models
i.e. to evaluate di� erent hyperparameter settings is also a
relevant dimension, however since this is essentially an em-
barrassingly parallel task, we consider it outside the scope
of this benchmark.

5.2 Absolute Runtime and COST
Next to analyzing the scalability properties of the systems

under test, we also measure and report the absolute runtimes
for a � xed data set size and compare these to the runtime of
single machine and single threaded implementations. McSh-
erry et.al. [22] introduced a new metric, called COST (the
Con� guration that Outperforms a Single Thread) , that de-
scribes the point when a distributed solution outperforms a
(competent) single threaded implementation. 8 Motivated
by this example, we also consider e� cient single threaded
implementations of supervised machine learning algorithms
as s COST baseline, thereby providing a COST metric for
machine learning algorithms. We choose the LibLinear 9

solver as an e� cient C++ single threaded implementation.
Experiment 3: Measure the runtime for training a model

while varying the number of machines and model size (keep-
ing the size of the training data set and) as well as the
runtime of a competent single-threaded implementation

Model Quality. As we focus on the training phase to
compare the performance, we validate that the prediction
accuracy as well as the resulting model weights of the im-
plementations is identical across systems in a separate test.
However we do consider this to be a prerequisite for the
above mentioned experiments and not an actual part of the
Benchmark.

5.3 Cluster Hardware
We run our supervised and unsupervised learning bench-

mark experiments on the following homogeneous cluster nodes:
Quadcore Intel Xeon CPU E3-1230 V2 3.30GHz CPU with

8 hyperthreads, 16 GB RAM, 3x1TB hard disks (linux soft-
ware RAID0) which are connected via 1 GBit Ethernet NIC
via a HP 5412-92G-PoE+-4G v2 zl switch.

5.4 Data Sets

8The authors show on the example of several graph algo-
rithms, that a single threaded implementation can com-
pete and, when optimized, often outperform distributed
frameworks. They therefore motivate to provide an single
threaded implementation when benchmarking distributed
systems.
9https://www.csie.ntu.edu.tw/~cjlin/liblinear/

We rely on generated data for the unsupervised learning
experiments. We sample 100 dimensional data fromk Gaus-
sian distributions and add uniform random noise to the data,
similar to the data generation for k-means in Mahout[4] and
HiBench [14].

For the supervised learning experiments, we use parts of
the Criteo Click Logs 10 data set. This dataset contains fea-
ture values and click feedback for millions of display ads
drawn from a portion of Criteo’s tra � c over a period of
24 days. Its purpose is to benchmark algorithms for click-
through rate (CTR) prediction. It consists of 13 numeric
and 26 categorical features. In its entirety, the data set
spawns about 4 billion data points, has a size of 1.5 TB .
Our experiments are based on days 0,1,2,3,5 and 6 of the
data set.

As a pre-processing step we expand the categorical fea-
tures in the data set using the hashing trick. The hashing
trick vectorizes the categorical variables by applying a hash
function to the feature values and using the hash values as
indices. Potential collisions do not signi � cantly reduce ac-
curacy in practice, they certainly do not alter the computa-
tional footprint of the training algorithm. This allows us to
control the dimensionality of the training data set via the
size of the length of the vector to be hashed into. Experi-
ments with � xed dimensionality were executed for d = 1000.
The subset based on days 0,1,2,3,5 and 6 results in a data
set of roughly 530 GB in size, when hashed to 1000 dimen-
sions. As collisions become less likely with higher dimen-
sional hash vectors, the data set sizes increases slightly with
higher dimensionality. However since the data set size is al-
ways identical for all systems, this e� ect does not perturb
our � ndings. Di � erent data set sizes have been generated
by sub- und super-sampling the data. A scaling factor of
1.0 refers to the criteo subset as presented in Table 1 which
contains about 1.15 billion data points .

6. BENCHMARK RESULTS: EXPERIMENTS
AND EVALUATION

In this section we present the results of our experimental
evaluation of the presented systems for the di� erent bench-
mark workloads. We ran all experiments using Flink 1.0.3
and Spark 1.6.2 in stand-alone mode.

6.1 Supervised Learning

6.1.1 Production Scaling
Figure 2 shows the runtimes for 5 iterations of batch gra-

dient descent learning of a l2 regularized logistic regres-
sion model. We evaluate di� erent implementation strate-
gies (MapReduce, MapPartition and TreeAggregate) as in-
troduced in Section 4.1 in both Spark and Flink. We mea-
sure the runtime for di � erent data set sizes by scaling the
criteo data set, which was hashed to 1000 dimensions.

While Flink strives to be declarative and to delegate the
choice of physical execution plans to the optimizer, this
experiment clearly shows that even for simple workloads
such as batch gradient descent, the choice of implementa-
tion strategy matters and has a noticeable e� ect on per-
formance for both Spark and Flink. Users must thus still
be aware of the performance implications of implementation

10 http://labs.criteo.com/downloads/download-
terabyte-click-logs/

0

20

40

60

80

100

120

140

160

180

200

0 0,5 1 1,5 2 2,5 3 3,5 4

R
un

tim
e

in
M

in
ut

es

Data Set Size(linear scalingfactor)

Spark MapPartition

Spark MapReduce

Spark TreeAggregate

Flink MapPartition

Flink MapReduce

Figure 2: Production Scaling Experiment: We mea-
sure the runtime of di � erent implementation strate-
gies for l2 regularized logistic regression on a � xed
set of 23 nodes for linearly growing data set sizes
with 1000 dimensions.

0

20

40

60

80

100

120

0 5 10 15 20 25

R
un

tim
e

in
M

in
ut

es

Number of Nodes

Apache Spark

Apache Flink

Figure 3: Strong Scaling for di � erent implementa-
tions of l2 regularized logistic regression in Spark
and Flink for 1000 dimensions and 530 GB.

choices in order to e� ciently implement scalable machine
learning algorithms on these data � ow systems. It can be
seen that the MapPartition based implementations, which
pre-aggregate the partial gradient sums in the user code, as
well as the TreeAggregate implementation in Spark outper-
form the MapReducebased implementation which rely on the
system to place combiners on map outputs to e� ciently ag-
gregate the individual gradients. The slightly worse perfor-
mance of Flink is due to unfortunate use of a newer version
of the Kryo library, leading to constant re-building of cached
� elds for the Breeze SparseVectors, which are aggregated in
the reduce phase. Overall however, all implementations on
all systems show the desired scaling behaviour and exhibit
linearly increasing runtime with increasing data set sizes. It
is also noteworthy that both Spark and Flink show seamless
out-of-core performance as the data set is scaled from mod-
erate 230 million up to about 4.6 billion data points. We
observe no performance degradation as the data set grows
beyond the size of the combined main memory of the 23

0

10

20

30

40

50

60

70

80

90

100

0 2000000 4000000 6000000 8000000 10000000

ru
nt

im
e�

in
�m

in
ut

es
�

Dimensionality�of�the�Model�

Flink smal data set (0.2)

Flink large data set (0.8)

Spark small data set (0.2)

Spark large data set (0.8)

Figure 4: Scaling the Model: Runtimes for training
a l2 regularized logistic regression model of di � erent
dimensions on 20 nodes. Results shown for two dif-
ferent data set sizes: small (about the size of main
memory) and large (signi � cantly larger than main
memory).

compute nodes (which would be the case beyond a scaling
factor of 0.5).

6.1.2 Strong Scaling
Figure 3 shows the results of our strong scaling experi-

ments for the batch gradient descent workload for the criteo
data set hashed to 1000 dimensions. Figures 6 and 7 show
the performance details11 for a run with 25 nodes and Fig-
ures 8 and 9 for a run with three nodes. It is evident that
while Flink tends to run faster on smaller cluster con � g-
urations, Spark has a slight edge on settings with many
machines. The resource consumption shows that on three
nodes, both system have to re-read signi� cant portions of
the data set in each iteration. However starting at about
ten nodes, the amount of data read from disk per iteration
continuously decreases in Spark, while it remains more or
less constant in Flink. In the run with with 25 nodes de-
picted in Figures 6 and 7, Spark reads almost no data from
disk at all, allowing for much higher CPU utilization com-
pared to Flink, which is still practically I/O bound. This is
most likely due to the di � erent architecture with respect to
memory management. While Spark schedules the tasks for
each iteration separately, Flink actually instantiates the en-
tire pipeline of operators in the plan a-priori and spreads the
available memory equally amongst all memory consuming
operators (reducers), leaving signi� cantly less of the physi-
cally available main memory for the iterative computation
than in Spark. In the highly resource-constrained setting of
2 or 3 nodes Flink’s memory management and robust out
of core performance actually leads to superior performance
compared to Spark though. In general, both systems show
the desired scaling behaviour which ensures that growing
production workloads can be handled by adding more com-
pute nodes, if the need arises.

6.1.3 Scaling Model Dimensionality.
As was described in the introduction, supervised learning

11 Plots generated using https://github.com/spi-x-i/shee

0

1

2

3

4

5

6

7

8

10 100 1000 10000 100000 1000000 10000000100000000 1E+09

R
un

tim
e�

in
�M

in
ut

es
�

Dimensionality�of�Model�

LibLinear (Single Thread)
Spark 1 Node (4 Cores)
Flink 1 Node (4 Cores)
Spark 2 Nodes (8 Cores)
Flink 2 Nodes (8 Cores)

Figure 5: COST: Runtimes for training a l2 regular-
ized logistic regression model of di � erent dimensions
di � erent amounts of nodes for a small sub-sample
(approx. 4GB) of the criteo data set compared to a
single threaded implementation (LibLinear).

models in production are not only trained on very sparse
data set of massive size, but also tend to have a very high
dimensionality. As it is computed from the sum of the sparse
gradients of all data points, the model is always a DenseVec-
tor whose size is directly proportional to its dimensionality.
In order to evaluate how well the systems can handle high
dimensional DenseVectors, which have to be broadcasted
after each iteration, we generate data sets of di� erent di-
mensionality via adjusting the feature hashing in the pre-
processing step. Figure 4 show the result of these experi-
ments for two di � erent data set sizes (a scaling factor of 0.2
and 0.8 of the criteo data set) for both Spark and Flink on
20 nodes. While the smaller data set has a total size com-
parable to the combined main memory of the 20 nodes, the
larger version is signi� cantly larger than main memory thus
forcing the system to go out of core.

For the smaller data set (lower curves) both systems tend
to exhibit rather similar performance for lower model di-
mensionalities, however Spark runs become more and more
unstable, frequently failing starting at 5 million dimensions.
We did not manage to successfully run Spark jobs for models
with more than 8 million dimensions at all, since Spark fails
due to a lack of memory. Flink on the other hand robustly
scales to 10 million dimensions.

The situation becomes signi� cantly worse for the larger
data set: Spark runtimes are severely longer that Flink’s,
and Spark does not manage to train models beyond 6 mil-
lion dimensions at all. Given the importance of being able
to train models with at least 100 million if not billions of
dimensions [9, 21, 24], this is a dissatisfying result. It seems
the Broadcast Variable feature was simply not designed or
intended to handle truly large objects.

6.1.4 Comparison to single threaded implementation
(COST)

In order to gain an understanding of the performance of
the distributed systems Spark and Flink compares to state of
the art single core implementations we run experiments with
the LibLinear solver, which provides a highly optimized sin-
gle threaded C++ implementation. As this solver is limited

Figure 6: Performance Details for Flink on 25
nodes (logistic regression) (blue = total, yellow =
read/sent)

Figure 7: Performance Details for Spark on 25 nodes
(logistic regression)

to data sets which � t into the main memory of a machine, we
generate a smaller version of the criteo data set containing
almost 10 million data points with dimensionalities ranging
from 10 to 1,000,000,000. Figure 5 shows the runtime for
10 iterations of LibLinear training. To compare, we also
run the Spark and Flink Solvers on one and two cores on
these smaller data sets. It is apparent that while the run-
times for Spark and Flink are larger on one node (which has
four cores), both systems run faster than LibLinear with
two nodes (or 8 cores). It can thus be assessed that the
hardware con� guration required before the systems outper-
form a competent single-threaded implementation (COST)
is between 4 and 8 cores. That is signi� cantly less than ob-
served for graph mining workloads by McSherry et al. [22].
A possible explanation could be that the ratio of compu-
tation to communication is much higher in ML workloads
compared to graph processing workloads which can exhibit
both: computation-intensive and communication-intensive
phases.

However, we were not able to successfully train models

Figure 8: Performance Details for Flink on 3 nodes
(logistic regression)

Figure 9: Performance Details for Spark on 3 nodes
(logistic regression)

with 100 million dimensions in both Flink and Spark, even
though the data set is signi� cantly smaller than the main
memory of even one node. Furthermore, we observe a strong
increase in runtime for 1 and 10 million dimensions for both
Spark and Flink. This reemphasizes the observation of the
dimensionality scaling experiment, that both data � ow sys-
tems struggle to train truly large models due to apparent
limitations in their support for large broadcast variables.

6.2 Unsupervised Learning
In order to evaluate the e� ectiveness of thereduceByKey()

operator in Flink and the groupBy() and reduce() operator
in Spark, we conduct both strong scaling and production
scaling experiments with the unsupervised learning work-
load k-means. The production scaling experiments in Fig-
ure 11 show that the runtime of both Spark and Flink lin-
early increases with the data set size. Furthermore both
Systems show no performance degradation once the data set
does not � t into main memory anymore, but rather grace-
fully scale out-of-core. The strong scaling experiments in

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35

R
un

tim
e

in
M

in
ut

es

Number of Nodes

Apache�Spark

Apache�Flink

Figure 10: k-means Strong Scaling experiments for
Spark and Flink in 200 GB of generated data with
100 dimensions and k=10 clusters

0

5

10

15

20

25

30

35

40

0 200 400 6 �� 8� � 1� � �

R
un

tim
e�

in
�M

in
ut

es
�

Data�Set�Size�in�GB�

Apache�Spak�(�
� �Nodes)

Apache�Flink�(30�Nodes)

Figure 11: k-means Production Scaling experiments
for Spark and Flink on 30 nodes with k=30

Figure 10 appear to con� rm the observation already appar-
ent for supervised learning workloads: Flink performs bet-
ter for the resource-constrained setting with a few nodes,
while Spark performs better once enough main memory is
available due to the addition of compute nodes. This as-
pect is also re� ected in the production scaling experiment.
Apache Flink’s approach to memory management: instanti-
ating the entire pipeline a priori and distributing the avail-
able memory amongst the memory-consuming operators of
the pipeline seems to be able to cope better with limited
main memory than Spark’s approach of separately schedul-
ing each task.

7. RELATED WORK IN BENCHMARKING
In the last years, several papers have been published on

the comparison and evaluation of distributed systems for
very speci� c workloads:

Cai et al. [8] present a benchmark of statistical machine
learning algorithms such as GMMs, HMMS and LDA on
Spark, GraphLab, Giraph and SimSQL. They focus on users
who want to implement their own ML algorithms, and thus

evaluate the ease of implementation and the absolute run-
time of the systems. However, they do not focus on provid-
ing comprehensive scalability evaluations but rather detailed
discussions of the implementation details of the hierarchical
statistical models on the di � erent systems. The results are
mixed, since no system clearly outperforms the others in
all evaluated dimensions. However, since they utilized the
Python API of Spark and noticed in the end of the paper,
that it provides substantially slower performance than the
JAVA Api , the runtime results are not directly comparable
to our experimental evaluation.

More closely related is the work by Shi et a. [27], which
presents an experimental evaluation of Apache Spark and
MapReduce for Large Scale Data Analytics. They consider
the workloads Word Count, Sort, K-Means and PageRank.
Contrary to our approach, the authors rely on third party
implementations in libraries (Mahout for MapReduce and
Spark MLlib), so that it remains unclear if performance dif-
ferences are due to algorithmic variations or the systems
themselves. Furthermore, experiments were carried out on
a cluster consisting of only four nodes, which is hardly the
targeted setup for deployments of both systems, thus in-
sights gained from these experiments may not be applicable
for common setups.

In a very similar manner, Marcu et. al. [20] present a
performance analysis of the big data analytics frameworks
Apache Spark and Apache Flink, for the workloads Word
Count, Grep, Terra Sort, K-Means, PageRank and Con-
nected Components. Their results show, that while Spark
slightly outperforms Flink at Word Count and Grep, Flink
slightly outperforms Spark at k-means, Terra Sort and the
graph algorithms PageRank and Connected Components. Con-
trary to our approach, the authors only consider simple
workloads and do not evaluate distributed machine learn-
ing algorithms with respect to the crucial aspect of model
dimensionality.

In a very similar manner, Marcu et. al. [28] present
yet another performance evaluation of the systems Apache
Flink, Spark and Hadoop. Contrary to our work they purely
rely on existing libraries and example implementations for
the workloads Word Count, Grep, Terra Sort, K-Means,
Page Rank and Connected Components. Their results con-
� rm that while Spark slightly outperforms Flink at Word
Count and Grep, Flink outperforms Spark at the graph al-
gorithms PageRank and Connected Components. However,
contrary to the � ndings of [20], Spark outperforms Flink for
the k-means workload. An observation which our � ndings
con� rm which are most likely due to improvements in Spark
1.6.1. (e.g. project Tungsten)which were not present in the
Spark version used in [20].

8. CONCLUSIONS
In this paper we presented a comprehensive Benchmark

to evaluate and assess data� ow systems for distributed ma-
chine learning applications. The Benchmark comprises dis-
tributed optimization algorithms for supervised learning as
well as algorithms for unsupervised learning. We motivated
and described di� erent experiments for evaluating the scal-
ability of distributed data processing systems for all the as-
pects that arise when executing large scale machine learning
algorithms. Next to Strong Scaling and Production Scaling
experiments which asses the systems ability for scaling the
data set size, we also introducedModel Dimensionality Scal-

ing and COST experiments to evaluate the ability to scale
with growing model dimensionality.

Our comprehensive experimental evaluation of di � erent
implementations in Spark and Flink on up to 4.6 billion
data points revealed both systems scale robustly with grow-
ing data set sizes. However, the choice of implementation
strategy has a noticeable impact on performance, requir-
ing users to carefully choose physical execution strategies
when implementing machine learning algorithms on these
data � ow systems.

When it comes to scaling the model dimensionality how-
ever, Spark fails to train models beyond a size of 6 million
dimensions. Both systems did not manage to train a model
with 100 million dimensions even on a small data set. Fi-
nally, experiments with a state of the art single threaded
implementation showed, that two nodes (8 cores) are a suf-
� cient hardware con� guration to outperform a competent
single-threaded implementation.

Since being able to train models with hundreds of mil-
lions if not billions of dimensions is a crucial requirement in
practice, these results are unsatisfactory. ParameterServer
architectures [17] may pose a viable alternative, as they have
been shown to scale to very high dimensionalities. However,
they require asynchronous algorithms, which usually only
approximate optimal solutions. Furthermore the signi � cant
communication cost associated with this approach is also a
challenge [26]. It thus remains an open challenge to pro-
vide an adequate solution to the problem of robustly and
e� ciently scaling distributed machine learning algorithms
both: with respect to data set size and model dimensional-
ity at the same time.

Acknowledgments
This work has been supported through grants by German
Ministry for Education and Research as Berlin Big Data
Center BBDC (funding mark 01IS14013A).

We would like to acknowledge the valuable contributions
of Marcus Leich in performance debugging the Flink im-
plementations, the fruitful recommendations of Sebastian
Schelter and Martin Jaggi as well as Andreas Kunft, Max-
imilan Alber and Seven D ähne.

9. REFERENCES
[1] http://peel-framework.org/.
[2] https:// � ink.apache.org/.
[3] https://hadoop.apache.org/.
[4] https://mahout.apache.org/.
[5] https://spark.apache.org/.
[6] A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag,

F. Hueske, A. Heise, O. Kao, M. Leich, U. Leser,
V. Markl, F. Naumann, M. Peters, A. Rheinl änder,
M. J. Sax, S. Schelter, M. Höger, K. Tzoumas, and
D. Warneke. The stratosphere platform for big data
analytics. The VLDB Journal , 23(6), Dec. 2014.

[7] T. Brants, A. C. Popat, P. Xu, F. J. Och, J. Dean,
and G. Inc. Large language models in machine
translation. In EMNLP , pages 858–867, 2007.

[8] Z. Cai, Z. J. Gao, S. Luo, L. L. Perez, Z. Vagena, and
C. Jermaine. A comparison of platforms for
implementing and running very large scale machine
learning algorithms. In Proceedings of the 2014 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’14, pages 1371–1382, 2014.

[9] k. Caninil. Sibyl: A system for large scale supervised
machine learning.

[10] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl,

S. Haridi, and K. Tzoumas. Apache Flink TM : Stream
and Batch Processing in a Single Engine. IEEE Data
Eng. Bull. , 38(4):28–38, 2015.

[11] J. Dean and S. Ghemawat. MapReduce: Simpli� ed
Data Processing on Large Clusters. In OSDI, pages
137–150, 2004.

[12] S. Ewen, K. Tzoumas, M. Kaufmann, and V. Markl.
Spinning fast iterative data � ows. Proc. VLDB
Endow., 2012.

[13] A. Halevy, P. Norvig, and F. Pereira. The
unreasonable e� ectiveness of data. IEEE Intelligent
Systems, 24(2), Mar.

[14] HiBench. https://github.com/intel-hadoop/HiBench.
[15] L. Jimmy and A. Kolcz. Large-scale machine learning

at twitter. SIGMOD 2012, 2012.
[16] A. Kumar, R. McCann, J. Naughton, and J. M. Patel.

Model selection management systems: The next
frontier of advanced analytics. SIGMOD Records,
44(4), May 2016.

[17] M. Li, D. G. Andersen, J. W. Park, A. J. Smola,
A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and
B.-Y. Su. Scaling distributed machine learning with
the parameter server. In OSDI, volume 14, pages
583–598, 2014.

[18] C.-J. Lin and J. J. Moré. Newton’s method for large
bound-constrained optimization problems. SIAM J. on
Optimization , 9(4), Apr. 1999.

[19] D. C. Liu and J. Nocedal. On the limited memory bfgs
method for large scale optimization. Math. Program. ,
1989.

[20] O. C. Marcu, A. Costan, G. Antoniu, and M. S.
Pérez-Hernéndez. Spark versus � ink: Understanding
performance in big data analytics frameworks. In
IEEE CLUSTER 2016 , pages 433–442, Sept 2016.

[21] H. B. McMahan, G. Holt, D. Sculley, M. Young,
D. Ebner, J. Grady, L. Nie, T. Phillips, E. Davydov,
D. Golovin, S. Chikkerur, D. Liu, M. Wattenberg,
A. M. Hrafnkelsson, T. Boulos, and J. Kubica. Ad
click prediction: A view from the trenches. In KDD
’13. ACM, 2013.

[22] F. McSherry, M. Isard, and D. G. Murray. Scalability!
but at what cost? In USENIX HOTOS’15 . USENIX
Association, 2015.

[23] F. Niu, B. Recht, C. Re, and S. J. Wright. Hogwild!:
A lock-free approach to parallelizing stochastic
gradient descent. In NIPS 2011, USA.

[24] M. Richardson, E. Dominowska, and R. Ragno.
Predicting clicks: Estimating the click-through rate
for new ads. In WWW ’07 . ACM, 2007.

[25] S. Schelter, C. Boden, M. Schenck, A. Alexandrov,
and V. Markl. Distributed matrix factorization with
mapreduce using a series of broadcast-joins.ACM
RecSys 2013, 2013.

[26] S. Schelter, V. Satuluri, and R. Zadeh. Factorbird - a
Parameter Server Approach to Distributed Matrix
Factorization. Distributed Machine Learning and
Matrix Computations workshop at NIPS 2014 , 2014.

[27] J. Shi, Y. Qiu, U. F. Minhas, L. Jiao, C. Wang,
B. Reinwald, and F. Özcan. Clash of the titans:
Mapreduce vs. spark for large scale data analytics.
Proc. VLDB Endow. , 8(13), Sept. 2015.

[28] J. Veiga, R. R. Expósito, X. C. Pardo, G. L. Taboada,
and J. Touri � o. Performance evaluation of big data
frameworks for large-scale data analytics. In IEEE
BigData 2016, pages 424–431, Dec 2016.

[29] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and
I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing. NSDI’12, 2012.

